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2881 IntrodutionIt is well known that Einstein's theory of General Relativity is not straightforward toquantize. This is easily seen from the fat that GR is not perturbatively renormaliz-able. Simply put, one an attempt to qunatize GR as an ordinary spin-two �eld in �atMinkowski spaetime, in the following way (for a nie review see [1℄). Starting from theusual Einstein-Hilbert ation
SEH =

∫
d4x

√−gR,one rewrites the metri tensor gµν as the �at Minkowski metri ηµν and the spin-two�eld hµν as
gµν = ηµν + hµν ,and substitutes it into the ation, rewriting it in terms of the new variable hµν . Therebyone obtains

SEH =

∫
d4xhµν�hµν + (gauge fixing terms)+

+(self − interaction terms).The D'Alambertian operator is de�ned in �at Minkowski spae, � ≡ ηµν∂µ∂ν . Fromhere one an proeed to perform the standard �eld theory quantization in the naiveway � �rst formulate the free quantum �eld theory, and then introdue interationsperturbatively.However, very soon one is bound to fae the di�ulty of nonrenormalizability ofthis theory. The tree-level Feynman diagrams are �nite, the one-loop divergenes anbe removed by wavefuntion renormalization, but at the two-loop level a Lagrangianounterterm of the form
L2 =

const

ε2
Rαβ

µνR
µν

ρσR
ρσ

αβ (ε→ 0)appears [2℄, whih is nonzero on-shell. Here ε = 4 − D is the uto� parameter fromdimensional regularization sheme. At higher loop levels similar terms involving R4, R5,et. terms are also expeted to appear, rendering the theory perturbatively nonrenor-malizable. This means that in order to remove all divergenes one needs to introdue atleast one additional oupling onstant for eah loop level. The in�nite number of theseoupling onstants implies the loss of preditive power of the theory, sine all experimentsdoable in priniple an only ever �x a �nite number of oupling onstants. This propertyof General Relativity has been known for quite some time, and there are various researhdiretions whih attempt to address this issue. They an be broadly separated into twolasses, by the methodology.The �rst lass of approahes onsiders modifying or substituting GR by anothertheory, whih should preferably be renormalizable. Suh attempts have evolved into vastresearh diretions suh as supergravity, string �eld theory, nonommutative geometry,



289and so on. The goal of eah proposed model is to have a renormalizable theory that lookslike GR at least on the length sales whih an be tested experimentally, while at thesame time have only a �nite number of oupling onstants. These oupling onstants ouldthen in priniple be used to predit the values of the in�nite set of oupling onstantsappearing in the perturbative quantum gravity approah.The seond lass of approahes is based on the point of view that abandons the renor-malization paradigm, and essentially gives physial meaning to the uto� parameters ofsome partiular regularization sheme. In other words, the assumption is that at somesale (typially expeted to be near the Plank sale) expetation values of the physialobservables will start to depend expliitly on uto� parameters. This dependene is as-sumed to be measurable (in priniple), rather than being removed by renormalization.These attempts have also evolved into vast researh diretions suh as loop quantumgravity, ausal dynamial triangulations, ausal set theory, et. The goal of all proposedmodels is exatly the same as before � predit some de�nite values for the in�nite num-ber of oupling onstants present in the perturbative quantum gravity. All these researhdiretions have had limited suess, and in the absene of any experimental data relevantat the Plank sale, none of these diretions an be preferred over the others.In what follows, we shall be mainly onerned with the approah of loop quantum gravity(for a review see [3℄), more spei�ally spin foam models, and we shall propose one novelpartiular model that addresses some serious issues present in all other spin foam modelsso far.In setion 2 we shall give a short overview of the status of LQG in general and spinfoam models in partiular. We will argue that the main drawbaks of all 4D spin foammodels stem from the fat that tetrad �elds are not basi variables of the theory. Setion3 deals with the ategorial generalization of the Poinaré group, alled the Poinaré
2-group. This will give us the neessary mathematial tools to reformulate the GR ationin a onvenient way whih inludes tetrad �elds as basi variables. The analysis of thisnew ation is then given in setion 4, with a sketh of a quantization proedure givingrise to the so-alled spinube model. Setion 5 ontains onlusions and disussion of theresults.2 Loop Quantum Gravityand Spin Foam ModelsA detailed review of the Loop Quantum Gravity approah an be found in [3℄. Here wejust give some basi properties at an informal level.The basi idea of LQG is to hoose di�eomorphism-invariant quantities as basi de-grees of freedom for the gravitational �eld, and then perform a anonial nonperturbativequantization of gravity in terms of these quantities. The natural andidates for basi vari-ables turned out to be Wilson loops, and subsequently their generalizations alled spinnetworks. This hoie of variables introdues a natural di�eomorphism-invariant uto�



290at the Plank length sale lP , thereby rendering the theory UV-�nite. The quantizationis performed in the Shrödinger piture, and provides one with a mathematially well-de�ned onstrutions of the kinematial Hilbert spae for the theory and some basioperators for geometri observables suh as lengths, areas and volumes of spae. Evolu-tion in time is embodied in the Hamiltonian onstraint, orresponding to the Wheeler-deWitt equation in the LQG setting.The main features of suh anonial approah to quantization are as follows. The the-ory represents a nonperturbative quantization of GR, and an in priniple be applied tothe study of physial systems where gravity is the dominant fator at short distanes �suh systems inlude the blak hole and osmologial singularities. It gives one a mathe-matial handle on a well-de�ned Hilbert spae of states for the gravitational �eld, therebygiving some insight into the quantum mehanial features of gravity. The natural basisfor the Hilbert spae is the set of the spin network states, ombinatorial graphs oloredby the irreduible representations of the SU(2) group, and orresponding intertwiners.Finally, the study of the geometri observables � the length, area and volume opera-tors � reveals that eah of them has a disrete spetrum, giving rise to the geometriinterpretation of the gravitational �eld wavefuntional, as well as the disrete haraterof spae.The theory also has some drawbaks. First, the Hamiltonian onstraint is not uniquelyde�ned, due to the usual ordering problems present in quantum mehanis. Seond,even if one hooses some partiular ordering, the Hamiltonian onstraint is extremelyompliated and impossible to solve in pratie. This severely limits the possibility forany pratial alulations and the study of the dynamis of the theory. As the mainobstale, the proof of the orret semilassial limit of the theory is still missing, as wellas any attempt to predit the oupling onstants from the perturbative gravity approah.A way to resolve these drawbaks has been found in the spin foam approah [4℄. Theidea is to give up anonial quantization, but instead attempt a ovariant, path-integralquantization of the theory. Building on the results of the anonial approah, one wantsto de�ne the gravitational path-integral
Z =

∫
Dgµν exp (iSEH [gµν ])in some way, in order to be able to alulate expetation values of observables, both indeep quantum regime and the semilassial regime. This approah tends to give one agood handle on the dynamis of the theory, in addition to all features of the anonialapproah.The basi proedure of de�ning Z goes as follows. One starts from the Plebanskiation for General Relativity,

S =

∫
Bab ∧Rab + φabcdBab ∧Bcd.The �rst part of this ation represents the topologial BF theory for the SO(3, 1) group.The Rab is the urvature 2-form, a �eld strength �F � for the SO(3, 1) onnetion 1-



291form ωab. The Bab is the Lagrange multiplier 2-form. The seond part of the ation isthe Plebanski onstraint, featuring Bab and the 0-form Lagrange multiplier φabcd. Thepurpose of the onstraint is to enfore the Bab to be a simple 2-form (i.e. an exteriorprodut of two 1-forms). This onstraint is therefore alled �simpliity onstraint�, andit an be shown that the simpliity requirement of the Bab �eld is enough to onvert thetopologial BF theory into General Relativity. The fat that Bab is simple gives rise tonontrivial degrees of freedom in the theory, reduing the equation of motion for ωab fromRiemann-�at to Rii-�at.The seond step is the quantization of the topologial BF theory. This an be donein a rigorous way by employing the methods of topologial quantum �eld theory. One�rst disretizes spaetime into 4-simplies, motivated by the struture of spae in theanonial LQG, and rewrites the BF ation in the form
∫
Bab ∧Rab discr.−→

∑

△
B△R△,where the sum goes over all triangles in the triangulation. Then one de�nes a topologialinvariant

Z ≡
∫

Dω
∫

DB exp
(
i
∑

△
B△R△

)
=

=
∑

Λ

∏

f

A2(Λf )
∏

v

A4(Λv).Here Λ are the irreduible representations of SO(3, 1), labelling the faes f , edges e andverties v of the Poinaré dual lattie orresponding to the triangulation. The olored
2-omplex dual to the spaetime triangulation is alled a spin foam. The amplitudes
A2(Λ) and A4(Λ) are determined suh that Z is in fat a topologial invariant � thetotal expression must not depend on the partiular hoie of the spaetime triangulation.In that way one arrives at the TQFT orresponding to the BF theory for the SO(3, 1)group, ommonly alled the Ooguri spin foam model. Of ourse, the invariant Z may be(and atually is) badly divergent, but that is not important at this stage, sine we areonly interested in the struture of the path integral.The last step in the quantization proedure is to enfore the simpliity onstraint onthe BF path integral at the quantum level. The exat tehnique for this is quite involved[5, 6℄, but the bottomline is that one projets the SO(3, 1) irreduible representations
Λ to the SU(2) representations present in the anonial LQG formalism, in order toobtain the same struture of the Hilbert spae on the spin foam boundary. The resultingtheory is not topologially invariant, but represents one possible rigorous de�nition forthe theory of quantum gravity. The most advaned spin foam model in this respet isthe EPRL/FK model, developed independently by two researh groups [5, 6℄.The main feature of spin foam models is that they orret some drawbaks of theanonial theory, primarily the dynamial setor is more under ontrol. In addition,there remains a ertain ambiguity in the hoie of the amplitudes A2 and A4. This an



292be onveniently utilised to rede�ne the model suh that it beomes IR-�nite and tohave a orret semilassial limit [7, 8℄. One an also employ standard QFT methodsto alulate the e�etive ation for the model in the semilassial limit, whih opensa possibility to expliitly determine the oupling onstants from perturbative quantumgravity. Unfortunately, the spin foam models introdue their own set of problems. Asidefrom the �unusual� properties like fuziness of geometry at the Plank sale, all spinfoam models su�er from two major handiaps. The �rst is related to the fat that, inaddition to the good semilassial limit, all models have additional semilassial limits,whih do not give rise to the standard GR, but to the so-alled area-Regge geometry.Sine these di�erent lassial limits are not observed in experiments, one needs someadditional mehanism to supress suh solutions. However, so far no mehanism ould beonstruted to deal with this problem.The seond handiap is related to the inability of the spin foam models to ouplematter �elds to gravity. Namely, the basi geometri variables whih are employed indesription of spaetime geometry are areas and volumes of spae, but not lengths. Thissituation makes it extremely ompliated (and in the ase of massive fermioni mattereven impossible) to inorporate matter �elds into the spin foam model. Even if doable(see [9℄ for the massless fermion oupling), the resulting theory would be too ompliatedto be useful for any alulation.As it turns out, both of these handiaps have a ommon origin � the edge lengths inthe triangulation are not well-de�ned at the quantum level. This is itself a onsequeneof the hoie of spin network states as basi degrees of freedom in the anonial LQG �the hoie whih emphasizes the spin onnetion ωab, while entirely ignoring the tetrad�elds ea. At the level of spin foam models, it is easy to see that the Plebanski onstraintwas purposefully designed to require the simpliity of Bab, while avoiding to expliitlystate that (the dual of) Bab is the produt of two tetrad 1-forms. The reason for thisis that the tetrad �elds do not appear as variables in the topologial BF setor of thetheory, whih is being used for the de�nition of the path integral.In the remainder of this paper we will present a novel way to address this maindi�ulty, and to introdue tetrad �elds expliitly in the topologial setor of the theory.However, in order to do this, it is important to introdue some mathematial oneptswhih provide the bakground formalism for the new model.3 Poinaré 2-groupWe begin by giving a very brief review of the so-alled ategori�ation ladder, an im-portant and ative researh topi in ategory theory. We shall not attempt at any rigor,leaving out most of the details, whih an be found for example in [10℄ and referenestherein.In the branh of mathematis alled ategory theory, one de�nes a struture alleda ategory as a set of objets and a set of morphisms between those objets, satisfyingsome basi axioms. Suh a struture is fairly general and does not have many interesting



293properties itself. However, this generality allows one to use it for all sorts of purposes.For example, one an de�ne the usual struture of a group as a ategory whih hasonly one objet, while all morphisms (mapping the objet onto itself) are invertible.The omposition rules for the morphisms an be hosen to be the group multipliation,thereby providing an isomorphism between a given group and the orrespondingategory with one element.The �rst step in the ategori�ation ladder is to introdue the onept of a 2-ategory.A 2-ategory onsists of a set of objets, a set of morphisms and a set of 2-morphisms,maps between morphisms. Intuitively, if a ategory an be represented by a linear graph ofdots (objets) and arrows onneting them (morphisms), a 2-ategory an be representedby a planar graph, onsisting of dots (objeets), arrows onneting them (morphisms)and �surfae arrows� mapping one arrow into another (see [10℄ for details and pitures).The main point is that the dimensionality of the graph has been raised by one. The ate-gori�ation ladder an ontinue by introduing a 3-ategory (or in general an n-ategory)by a similar proess, leading to 3-dimensional (in general n-dimensional) graphs.In analogy with a group, one an then de�ne a 2-group, as a 2-ategory whih hasonly one element, while all morphisms and 2-morphisms are invertible. A 2-group is aategorial generalization of a group, and is not a group itself. One an prove that any 2-group is equivalent to a rossed module, a struture that has been studied independentlyby mathematiians before the idea of the ategori�ation ladder has even been introdued.A rossed module is a quadruple (G,H, ∂, ⊲). This is a pair of groups G and H , suh that
∂ : H → G is a homomorphism and ⊲ : G ×H → H is an ation of G on H suh thatertain axioms are satis�ed, whih turn out to be diretly related to the struture of a
2-ategory, see [10℄. The elements of G represent the 1-morphisms, while the elements ofthe semidiret produt G ⋉ H represent the 2-morphisms. The anonial example of a
2-group relevant for physis is the Poinaré 2-group, where G = SO(3, 1), H = r4, ∂ isa trivial homomorphism and ⊲ is the usual ation of the Lorentz transformations on the
r4 spae. The Lorentz group is the group of morphisms, while the usual Poinaré groupis the group of 2-morphisms.The main feature of the whole 2-group formalism is that one an generalize theonept of a holonomy along a line to its two-dimensional analog � a surfae holonomy.The initial interest in this ame from string theory. A point-partile travels along a worldline in spaetime, and one is naturally led to the onept of a parallel transport along agiven line. String theory promotes the point partile into a one-dimensional objet � astring � whih then travels along a world surfae in spaetime. Thus one would like tohave a onept of a parallel transport along a given surfae.One of the main aims of the 2-ategory and 2-group formalism is to introdue andformalize this onept.Given the strong ategorial relationship between groups and 2-groups, one an on-strut a gauge theory on a 4-manifold M based on a rossed module (G,H, ∂, ⊲) of Liegroups by using 1-forms A, whih take values in the Lie algebra g of G, and 2-forms β,



294whih take values in the Lie algebra h of H [11,12℄. The forms A and β transform underthe usual gauge transformations g : M → G as
A→ g−1Ag + g−1dg , β → g−1 ⊲ β ,while the gauge transformations generated by H are given by

A→ A + ∂η , β → β + dη +A ∧⊲ η + η ∧ η ,where η is a one-form taking values in h, see [12℄. When the group H is Abelian, whihhappens in the Poinaré 2-group ase, then the η ∧ η term vanishes, and one obtains thegauge transformations given in [11℄.The pair (A, β) represents a 2-onnetion on a 2-�ber bundle assoiated to the 2-Liegroup (G,H) and the manifold M. The orresponding urvature forms are given by
F = dA+A ∧A− ∂β , G = dβ +A ∧⊲ β ,and they transform as

F → g−1Fg , G → g−1 ⊲ G ,under the usual gauge transformations, while
F → F , G → G + F ∧⊲ η ,under the H-gauge transformations.One an introdue a natural topologial gauge theory determined by the vanishingof the 2-urvature

F = 0 , G = 0 .These equations an be obtained from the ation
S =

∫
〈B ∧ F〉g + 〈C ∧ G〉h ,where B is a Lagrange multiplier 2-form taking values in g, C is a Lagrange multiplier

1-form taking values in h, 〈 , 〉g is a G-invariant nondegenerate bilinear form in g and
〈 , 〉h is a G-invariant nondegenerate bilinear form in h. This ation is alled BFCGation, in analogy with the BF theory ation. The gauge transformations of the Lagrangemultiplier �elds are given by

B → g−1Bg , C 7→ g−1 ⊲ C ,for the usual gauge transformations, while
B → B − [C, η] , C 7→ C ,for the H-gauge transformations.



295Let us now examine the ase of the Poinaré 2-group. In this ase A = ωabJab,
β = βaPa, where a, b ∈ {0, 1, 2, 3}, Jab are the generators of the Lorentz group while Paare the generators of the translation group r4. Consequently

F = (dωab + ωa
c ∧ ωcb)Jab = RabJab,

G =
(
dβa + ωa

b ∧ βb
)
Pa = (∇βa)Pa.The G-gauge transformations are the loal Lorentz rotations

ω → g−1ωg + g−1dg , β → g−1 ⊲ β ,while the H-gauge transformations are the loal translations
δεω

ab = 0 , δεβ
a = dεa + ωa

b ∧ εb ,where η = εaPa.The BFCG ation then beomes
S =

∫

M

(
Bab ∧Rab + Ca ∧ ∇βa

)
,where

δεB = 0 , δεC = 0 .At this point a very important observation is in order. The transformation properties ofthe 1-form Ca are the same as the transformation properties of the tetrad 1-form ea underthe loal Lorentz and the di�eomorphism transformations. In addition, the equation ofmotion for Ca is ∇Ca = 0, just like the no-torsion equation for the tetrad, ∇ea = 0.Based on this, we identify the Lagrange multiplier Ca with the tetrad �eld ea, and writethe ation in the form
S =

∫

M

(
Bab ∧Rab + ea ∧ ∇βa

)
.In this way one an onstrut a ategorial generalization of the topologial BFation. The new ation is again topologial, but more rih in struture, sine the tetrad�elds are expliitly present. In addition, the 2-group formalism provides a framework toonstrut a topologial quantum �eld theory from this ation, in analogy with the BFase. This provides us with the neessary tools to onstrut a ategorial generalizationof a spin foam model, based on the BFCG ation instead of the BF ation. The expliitpresene of the tetrads should help us resolve the two handiaps of spin foam modelsdisussed in setion 2.4 The Spinube ModelThe �rst step in the onstrution of the new model is to write the ation for General Rel-ativity, starting from the BFCG ation. In order to do this, all we need is the simpliityonstraint,

Bab = εabcd e
c ∧ ed ,



296whih an now be added into the ation as it stands, as opposed to the BF ase wherethe Plebanski onstraint had to be introdued due to the absene of the tetrads ea in the
BF ation. Therefore, one an write the onstrained BFCG ation in the form

S =

∫

M

[
Bab ∧Rab + ea ∧ ∇βa−

− φab ∧
(
Bab − εabcdec ∧ ed

) ]
,

(1)where φab is an additional Lagrange multiplier 2-form �eld, introdued in order to enforethe simpliity onstraint.The equations of motion are obtained by varying S with respet to B, e, ω, β and φ,respetively, to give:
Rab − φab = 0 ,
∇βa + 2εabcdφ

bc ∧ ed = 0 ,
∇Bab − e[a ∧ βb] = 0 ,
∇ea = 0 ,
Bab − εabcde

c ∧ ed = 0 .With the usual assumption that the tetrad �elds are nondegenerate, these equations anbe reworked into an equivalent form:
φab = Rab, Bab = εabcde

c ∧ ed, βa = 0,

∇ea = 0 , εabcdR
bc ∧ ed = 0 .The �rst three equations determine βa and the multipliers Bab and φab in terms of eaand ωab. The fourth equation is the no-torsion equation, whih determines the onnetion

ωab to be the Levi-Civita onnetion (a funtion of the tetrads ea). The last equationis nothing but the Einstein �eld equation for the only remaining �eld ea. Thus we seethat the ation (1) is lassially equivalent to General Relativity. More preisely, it isequivalent to the Einstein-Cartan theory,
SEC =

∫

M
εabcde

a ∧ eb ∧Rcd ,sine the torsion is equal to zero as an equation of motion rather than by de�nition.Given the new ation for General Relativity, we an proeed with the ovariantquantization in analogy with the spin foam models. The ation has the topologial termand the onstraint term, so as a �rst step we onstrut a topologial quantum �eld theoryby de�ning the path integral for the BFCG part of the ation. In the seond step, weenfore the onstraint term by requiring a suitable restrition in the path integral of thetopologial theory.One begins by triangulating spaetime into 4-simplies, and rewriting the topologialpart of the ation in the form
∑

△
B△R△ +

∑

l

el(∇β)l,



297where the �rst sum goes over all triangles and the seond goes over all edges in thetriangulation of the spaetime manifold. Then one onstruts a topologially invariantpath integral in the form (see [13℄ for the details of the onstrution)
Z ≡

∫
Dω

∫
DB

∫
De

∫
Dβ

exp
(
i
∑

△
B△R△ + i

∑

l

el(∇β)l
)
=

=
∑

Λ

∏

p

A1(Λp)
∏

f

A2(Λf)
∏

v

A4(Λv).

(2)
The labels Λ = (Lp,mf), where Lp ∈ r+

0 andmf ∈ Z, are now irreduible representationsof the Poinaré 2-group, and in addition to verties v and faes f of the Poinaré duallattie, we also take the produt over all the polyhedra p, sine they are dual to the edgesof the triangulation and naturally appear in the onstrution due to the presene of the
e ∧ ∇β term in the BFCG ation. The amplitudes A1(Λ), A2(Λ) and A4(Λ) are hosenso that Z does not hange under the ation of the Pahner moves, whih guarantees itsindependene of the triangulation. The polyhedra are olored with Lp, whih have theinterpretation as lengths of triangulation edges, while faes are olored with mf , whihhave the interpretation as areas of the triangles in the triangulation. In the topologialtheory, edge lengths and triangle areas are independent of eah other.Note that the path integral is not de�ned over a olored 2-omplex (the spinfoam),but rather over a olored 3-omplex (alled spinube).Finally, we an impose the simpliity onstraint, in order to turn the topologial pathintegral into a realisti model for quantum gravity. Based on the geometri interpretationof the variables, the onstraint atually says that a very natural requirement should beenfored � the triangle areas must be ompatible with the orresponding edge lengths.This an be formalized in the requirement

|mf |l2P = Af (L), ∀fwhere Af (L) is the Heron formula for the triangle area in terms of its edges. The Planklength appears naturally in order to balane the dimensions of the two sides of theequation. As a last step, one rede�nes the amplitudes A1, A2 and A4 in order to renderthe theory IR-�nite, as well as to enfore the orret semilassial limit, in a way similarto the spinfoam models.Note that imposing this onstraint leaves only edge lengths as independent variablesin the theory, so that the �area-Regge� problem present in spinfoam models is resolvedautomatially. In addition, the edge length variables allow for a ompletely straightfor-ward oupling of matter �elds to the spinube model. Namely, at the level of the lassial



298theory, one an introdue fermions via the ation
S =

∫ [
Bab ∧Rab + ea ∧ ∇βa − φab ∧

(
Bab − εabcdec ∧ ed

) ]
+

+ iκ1

∫
εabcd e

a ∧ eb ∧ ec ∧ ψ̄
[
γd

↔
d + {ω, γd}+ im

2
ed
]
ψ+

+ iκ2

∫
εabcde

a ∧ eb ∧ βc ψ̄γ5γ
dψ ,

(3)where ω = ωab[γ
a, γb]/8, κ1 = 8πl2P/3 and κ2 = −2πl2P . The �rst term is the onstrained

BFCG ation, while the seond and third terms introdue fermion oupling whih resultsin the same equations of motion as in the ordinary Einstein-Cartan theory with fermions.The quantization proedure of the ation (3) is essentially the same as the one withoutfermions. The only di�erene is in the fat that the vertex amplitude A4 will hange tore�et the presene of the fermioni matter, as
A4 → A4 exp

[
iS

(ferm)
R (L,ψ)

]
,where S(ferm)

R is the Regge disretized ation of a fermion �eld ψ oupled to gravity. Theexpressions whih appear in S(ferm)
R an be easily obtained, in ontrast to the EPRL/FKmodel ase, where the expression for the 4-simplex volume is impossible to de�ne uniquelyin terms of the spin foam variables [9℄.Similarly to (3), one an also ouple other matter �elds to (1) in a ompletely straight-forward way, inluding gauge and salar �elds, the osmologial onstant, the Holst term,and so on.5 ConlusionsThe proposed 2-group reformulation of GR an be used to obtain a ategorial laddergeneralization of Loop Quantum Gravity. The advantage of this generalization is that theedge lengths of a triangulation beome the basi dynamial variables. This will failitatethe onstrution of the path integral suh that the lassial limit of the orrespondingquantum theory is GR and the oupling of matter will be muh easier to aomplish.The ategorial nature of the theory implies that the edge labels of a spaetimetriangulation should be the 2-group irreduible representations on a 2-Hilbert spae.Note that this is not unique, sine one an also use the ategory of hain omplexesof vetor spaes in order to de�ne the representations, see [12, 14℄. The struture of thehain-omplex representations is di�erent from the 2-Hilbert spae representations, whihmeans that hain-omplex representation theory de�nes an alternative quantization ofGR. Hene it would be interesting to develop the hain-omplex representation theory ofthe Poinaré 2-group.The physial signi�ane of 2-Hilbert spae representations ould be better under-stood by performing a anonial quantization of the ation (1).
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