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THE PROBLEM OF QUANTUM GRAVITY

Why quantize gravity?
e same reasons as electrodynamics (two-slit experiment, hydrogen atom, ... )
e resolution of singularities (black holes, Big Bang, .. .)
e black hole information paradox (nonunitary evolution?)

e theoretical and aesthetical reasons. . .

How to quantize gravity?
e perturbation theory does not work (nonrenormalizability of gravity). . .
e almost zero experimental results to guide us. ..

e ... we have a problem!



LOOP QUANTUM GRAVITY

The idea

e Wilson loops are chosen as basic degrees of freedom,
e formalized as “spin network states”,

e canonically quantized.

Achievements

e nonperturbative quantization of GR,
e kinematic sector of the theory well-defined,

e lengths, areas and volumes of space quantized!

Drawbacks

e dynamics described only in principle,
e no proof of semiclassical limit,

e very limited possibility for calculations.



SPINFOAM MODELS

The idea

e build up on canonical LQG (use the same degrees of freedom, construct the same
structure of the Hilbert space, etc.),

e rewrite GR action using the Plebanski formalism,

S = /Bab N Rab + CbadeBab N\ Bcda

e discretize spacetime into 4-simplices,

e perform covariant quantization of the B F' sector, by providing a definition for the
gravitational path integral,

Z:/Dw/DBexp iy BaRa| =...=) []Ax00)]]As0),
A A S v

e enforce the Plebanski constraint by restricting the representations A and redefining

the vertex amplitude Ay.



SPINFOAM MODELS

Achievements
e well-defined nonperturbative quantum theory of gravity,
e both kinematical and dynamical sectors under control,
e can have a proper semiclassical limit.

Drawbacks
e geometry is “fuzzy” at the Planck scale,
e has many different semiclassical limits,
e matter coupling is problematic,

e hard to extract any results.

The reason for these drawbacks: tetrads are not explicitly present in
the action!



THE BFCG ACTION

One can associate the BFCG action to the Poincaré 2-group:
Sz/Bab/\RabJrCa/\Ga, (G = dB" 4+ w A ).

Note that the Lagrange multiplier C* is a 1-form and has an equation
of motion V(" = 0, exactly the same as the tetrad e!

Therefore,

KEY STEP

e identify: C* = e,
e rename: BI'CG — BFEG,

and rewrite the action as

S:/BabAR“b+e“/\Ga.



THE CONSTRAINED BFCG ACTION

The BF(CG action can be constrained to give GR.:

S = /Bab A R +e" NG, — dup (Bab — <€ab0d€a A Gb) .

\ >4 \ e

VvV Vv R
topological sector constraint

Equations of motion are equivalent to:

e cquations that determine the multipliers and j3:

¢ab _ Rab’ Bab _ 8abcdec A ed, 6@ — 0

e Einstein equations:
Eabcdec Ael = 0,

e no-torsion equation:
Ve = 0.

This is classically equivalent to general relativity!



THE MAIN BENEFITS

Introduction of matter fields is straightforward:

S = /Bab AR+ e* NG, — Dub (Bab — gtbedg A eb) +

+i/<;/5abcde“/\eb/\ec/\1ﬂ <7d§ +{w,fyd}+@ed) P—

2
OK — 8
—i Eavcac” A €" N B pysy™p, (k= gﬂlﬁ)-
The covariant quantization is possible — spincube model:

Z:/Dw/DB/De/Dﬂexp i;BARA—F;egGl
=> TT A A [ ] As().
A op f v




THE HAMILTONIAN STRUCTURE

The BFCG action in components:

S = /d4$ ghpe [Bab/w (apw o T W cpw ) + ea,u( yﬁapa + Wacyﬁcpa)] .

The variables:

BY(), @), wPe) and  B°()
Momenta and primary constraints:
P(B)a" = m(B)a" ~ 0, Pe) = m(e)a =0,
Pw)w! = 7w’ ~0, Pw)y' = m(w)w — 2%k By, ~ 0,
P(B)." = n(3)" =0, P(B).7 = m(0)a"7 4 2e" " eq; = 0.

The simultaneous Poisson brackets:
{B® (% t), 7(B) (T, t)} = 45351)5'“5053( )
{e®(Z,t), m(e)” (2, 1) } = 5“5”5 Nz — ),
{wh (1), T(w)d" (@, 8)} = za[aab}ava \(F — ;E’),
(Bl t), (BN (#,0)) = 203007007 — 7).



THE HAMILTONIAN STRUCTURE

The canonical Hamiltonian:
H.= /d?)_) I (= Bayoi R it — €"0Gaiji — 2Ba0kT% 5 — waro (ViB™ji — €%8% k)|
The total Hamiltonian:

Hr = Het / d*Z [A(B)", P(B)a + AMe)*, Ple)d +

+>‘<W>abup<w)abu + A(ﬁ)auvp(ﬂ)aw} :

Consistency of the primary constraints:

P(B)u" = 25" S(R)ar. S(R)™ = R™j ~0,

POS = 8@ L SG = e

P(B),% = 2e"*S(T) s, S(T); = T% =0,

Pw)w’ = 2S(Bef)u, S(BeB)® = glik [ViB“bjk—e[“iﬁb]jk] ~ 0.



THE HAMILTONIAN STRUCTURE

Determined multipliers:

P(B)o/ Aw)™; = §Viw™y,
P(e)," ~ o AB)S = Vil — w8,
implies
P(B)* ~ Ae)® = Vie"y — wype’s,
1
Plw)o ~ A(B) iy = 5 (VB + Wl B ) +
1
+ 1 (e[aoﬁb]z‘j + €[aj5b]0¢ - €[a¢5b]0j) -
Consistency of secondary constraints is automatic:
S(R) = 2w[acos(R)b]Czj,
S(G) = "B S(R)™y — w0 S(G),
1
S(T); = §€bOS(R)abz’j — wS(T)",
S(Bep)® = 2%k (B ( “orS(R)Ye + Bl.8(T)Y,; ) + el S(G)Y + 2w, S(Be )"l



THE HAMILTONIAN STRUCTURE

Algebra of constraints:

{P(B)w", Pw)ad' }
{P(e).", P(B),"” }
{5() P(8)y" }
{S(G)", P(w)ad' }
{S(T)%;, Ple)*}
{S(T)%, P(w)ed"
{ S(Bep “, P e). }
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THE HAMILTONIAN STRUCTURE

First class constraints:

P(B)abm? P(e)aov P(w)ab()? P(ﬁ)am?

Second class constraints:
P(B)abjka P(e)aia P<w)abi7 P(ﬁ)ama
S(R)abij, S(G)Y, S(Beﬁ)“b, S(T)“ij.



THE HAMILTONIAN STRUCTURE

The gauge symmetry generator:

G[eabz_7 6ab) 8(17 5 ] /dS—» [% ( abZP(B)abOi . gabigabi) + (éaP(e)ao . gaga) +

+5 (E"PW)a’ — £"Ga) + (€:P(B)a" — €Ga') | .

NIH

where

Gu' = 28" S(R) i + V;P(B)a’ + 20 00 P(B)y”,

G = 25(BeB)ap + ViP(w)a' + 20 0P (W) — 2epa0P(€)y” — 2epiPe)y +
+Bc[aijP(B)b]Cij + 2Bj0iP(B)y v 20140 P (ﬁ)b]m — ﬁ[aijp(ﬁ)b]ija

Go = S(G)a+ ViPle)y' —w’aP(e)y’ — —5 0iP(B)ay" — l5bz‘jp( B)w”,

| 3 y ] 1 g
Go' = 26"FS(T) o + V,;P(B) — WP (B)" — EGbOP(B)abOZ + iebjP(B)ab”



THE HAMILTONIAN STRUCTURE

Form-variations of the variables:
{w?,, G} = V&
{B®,,G} = 2V ", —&".B?,, — "B, +cp,, — 2l e,
{ﬁauua G} — QV[ME v — 5abﬂb,uw
{eau , G} = Vusa — 8ab€bu. <€ab0 = O, 8a0 = O)

Symmetry transformation corresponding to £ (z):
w, =AM, AT MG, € =Ae, B'=A3, B =ABA', AeSO(31).
Symmetry transformation corresponding to £ HEAF
B'™,, = B®,, +2V ", (), ¢ =e, W= w, 3 =3.
Symmetry transformation corresponding to ¢%;(z):
B = 8% + 2V e, B'“b,w = BabW — QG[G[MEb]V], ¢ =e, W =w.
Symmetry transformation corresponding to ¢%(x):

/ lab ab a b / /
e, =e", + Ve B, =B uv+5[5]uw 6 =0, w = w.



THE HAMILTONIAN STRUCTURE

Introduce new set of parameters:
A AQa
RN ST SR Rt
a a a a a a
e’ — eV H WYy, €Y, — ", +E'BY),.
The generator in terms of new parameters:

1 | | | | |
G[Eabi, Sai, {_:ab7 5)\] _ /d?’f [5 (éabiP(B)abOz . gabigabz) + (5%})(5)@0@ . gaigaz) +

+ % (B P(w)w” — e M) + (@H A EVPy + 87?2-)] ,
where
= SBEP(BA" + o™ Pw)a’ + BuP(B) +3Ple),
Mauy = Gu,
Py = Hr,



CANONICAL QUANTIZATION

Fields ¢ € {B®,,, 3",,,w®,, ¢} and their momenta 7, are promoted to
operators,

5
o

the wavefunctional V[¢"] = (¢*|V) is required to be gauge-invariant,

GO =0,

gt — ¢t = ¢, 7TA—>7TA—Z

and the set of solutions of this equation determines the physical Hilbert
space of the theory:

Hens = { Vo] | GU[¢"] =0}

TODO: repeat the whole calculation for the constrained BF'CG model!



THANK YOU!



