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Chapter 2

Tensor analysis

2.1 Tensor fields, parallel transport

So far we have been constructing the tensor algebra from a tangent space at one point P on the manifold
M. Now we want to pick another point, Q, construct an analogous tensor algebra there, and then
compare tensors at those different points.

Begin with the definition of the concept of a field. A tensor field is a map from the manifold M
into a tensor algebra T :

F : M → T, P 7→ T (P),

where P ∈ M.
Since at every point the tensor algebra has the structure

T (P) = T0,0 ⊕ T1,0 ⊕ T0,1 ⊕ T2,0 ⊕ T1,1 ⊕ T0,2 ⊕ . . . ,

the field F also naturally splits into a direct sum of a scalar field, vector field, 1-form field, and
all other tensor fields, according to the nontrivial part of its codomain. Essentially, a tensor field is
specified once one has attached some tensor to every point on a manifold, each tensor being the element
of appropriate tensor algebra at that point.

One can naturally ask the question how to compare the value of a, say, vector field at two different
points P and Q. The values of the field, although both being vectors, at the two points belong to two
different and unrelated spaces, so one cannot just “subtract” them. Such operation is defined only within
a tensor algebra at one point, not across several points.

In order to address this issue, one needs to define the idea of specifying what vectors are to be
considered “the same” in two different points. This process is called parallel transport. In order to
specify a rule for parallel trasport, take some set of basis vectors eeeµ(Q) ∈ TMQ, and specify how do
those vectors “look” when one moves them slightly into a neighboring point P which is separated from
P by some infinitesimal “distance” dxν in the direction of the eeeν(P) vector:

eeeµ(Q) ≡ eeeµ(P) + Γ λ
µν(P)dxνeeeλ(P), where Q ≡ P + dxνeeeν(P).

Note:

• In the above equation index ν is fixed, and not summed over, despite repeating twice!

• The “distance” parameter dxν is defined as a parameter of a coordinate curve joining P and Q,
while eeeν(P) is the tangent vector to that curve at P . We have not introduced yet the “real” notion
of “metric distance” between points on a manifold, so this is the best we can do at the moment.

• The coefficients Γ λ
µν that define the actual correspondence between eeeµ(Q) and eeeµ(P) are called

connection coefficients. They may be specified differently from point to point, so are therefore
functions of P .
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• When one constructs the vector at P starting from a vector at Q and using connection coefficients,
it is said that the vector is parallely transported from Q to P .

• As the connection coefficients depend on index ν, they may be different when one transports a
vector from Q to different directions. Therefore, parallel transport depends on the path
along which the vector is being transported.

• Connection coefficients are not components of any tensor, despite their index-like notation.
There is no geometric object in tensor algebra at a point that would correspond to these. We shall
discuss this issue further below.

Once we have specified the rule for parallel transport of basis vectors eeeµ, we can easily construct the
appropriate rule for the parallel transport of basis 1-forms eeeµ(Q) ∈ TM∗

Q into the point P . This is done
simply by using the requirement that the parallely transported basis of 1-forms should be biorthogonal
to the paralelly transported basis of vectors. Therefore, we have:

eeeµ(Q) ≡ eeeµ(P) − Γ µ
λν(P)dxνeeeλ(P), where Q ≡ P + dxνeeeν(P).

Note that the sign in front of the connection coefficients is changed from plus to minus.
At this point we have all the neccessary pieces to perform a parallel transport of any vector (and

indeed, any tensor) by keeping its components fixed and transporting the basis. For example, if AAA(Q) =
Aµ(Q)eeeµ(Q), we have:

AAAPT (Q → P)
︸ ︷︷ ︸

transported vector

= Aµ(Q)
︸ ︷︷ ︸

fixed components

eeeµ(P + dxνeeeν(P))
︸ ︷︷ ︸

transported basis

= Aµ(Q)
[
eeeµ(P) + Γ λ

µν(P)dxνeeeλ(P)
]

=

=
[
Aλ(Q) + Γ λ

µν(P)Aµ(P)dxν
]

︸ ︷︷ ︸

transported components

eeeλ(P) = A
µ
PT (P)eeeµ(P).

Note that in the third step we have substituted Aµ(Q) for Aµ(P), since Aµ(Q)dxν = Aµ(P)dxν+ second
order differentials (which can be neglected).

Similarly, one can calculate the components of any parallely transported tensor, simply by transporting
each of the vectors in its basis. Once transported to the point Q, the vector AAA can then be compared
to some other vector residing at that point. This is the basis we need in order to define the concept of a
derivative of a tensor field.

2.2 Covariant and exterior derivatives, commutators

The notation of parallel transport may be somewhat cumbersome and confusing. Therefore, rewrite the
rule for parallel transport of basis vectors in the form

eeeµ(Q) − eeeµ(P) = Γ λ
µν(P)dxνeeeλ(P),

or in the form
eeeµ(Q) − eeeµ(P)

dxν
= Γ λ

µν(P)eeeλ(P).

Now given that dxν is considered infinitesimal, and since Q ≡ P + dxνeeeν(P), we can take the limit
dxν → 0 and write the above as

lim
dxν→0

eeeµ(P + dxνeeeν(P)) − eeeµ(P)

dxν
= Γ λ

µν(P)eeeλ(P).

The left-hand side is actually the usual definition of a derivative, in the direction of eeeν . Denote it as
▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽

eeeν
≡ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽ν , and write the parallel transport rule in the form:

▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
eeeν

eeeµ(P) = Γ λ
µν(P)eeeλ(P).
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Similarly, for basis 1-forms we have:

▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
eeeν

eeeµ(P) = −Γ µ
λν(P)eeeλ(P).

Now we have all the ingredients to construct a directional derivative of a vector field, in the
following way. Let a vector field AAA(M) be specified. At point Q it has the value AAA(Q), while at point P
it has the value AAA(P). We want to subtract those two vectors, take the ratio with respect to “distance”
between P and Q, and take the limit when this distance goes to zero. But we cannot just subtract vectors
in different points. Instead, first perform parallel transport of the vector AAA(Q) into the point P , and
then subtract from it the actual value AAA(P) that the vector field has at that point. In other words,

▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽νAAA ≡ lim
dxν→0

AAAPT (Q → P) −AAA(P)

dxν
= lim

dxν→0

A
µ
PT (P)eeeµ(P) − Aµ(P)eeeµ(P)

dxν
=

= lim
dxν→0

Aλ(Q) − Aλ(P) + Γ λ
µν(P)Aµ(P)dxν

dxν
eeeλ(P) =

[
∂νAλ(P) + Γ λ

µν(P)Aµ(P)
]
eeeλ(P).

This being the definition, the rules for actual calculation of directional derivative are much more conve-
nient when expressed using the above formulas for parallel transport of basis vectors. Pick a coordinate
system at point P on the manifold, and express the vector field in the form AAA(x) = Aµ(x)eeeµ(x). Then
calculate the directional derivative using the “chain rule”:

▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽νAAA(x) = [▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽νAµ(x)
︸ ︷︷ ︸

∂νAµ(x)

]eeeµ(x) + Aµ(x) ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽νeeeµ(x)
︸ ︷︷ ︸

Γ λ
µν(x)eeeλ(x)

=
[
∂νAλ(x) + Γ λ

µν(x)Aµ(x)
]
eeeλ(x).

Evaluating this at x = x(P) we see that it is identical to the definition calculation. Note that in the first
term the directional derivative acts on an ordinary function just like an ordinary derivative.

The elegance of the latter method is obvious, and we can use it to calculate the directional derivative
of an arbitrary tensor. For example, given a tensor field AAA ∈ T2,1, one can calculate its directional
derivative as follows:

▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽ρAAA = ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽ρ

(
Aµν

λeeeµ ⊗ eeeν ⊗ eeeλ
)

= ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽ρA
µν

λeeeµ ⊗ eeeν ⊗ eeeλ + Aµν
λ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽ρeeeµ ⊗ eeeν ⊗ eeeλ

+Aµν
λeeeµ ⊗ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽ρeeeν ⊗ eeeλ + Aµν

λeeeµ ⊗ eeeν ⊗ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽ρeee
λ

= [∂ρA
µν

λ + Γ µ
σρA

σν
λ + Γ ν

σρA
µσ

λ − Γ σ
λρA

µν
σ]eeeµ ⊗ eeeν ⊗ eeeλ

The resulting expression in square brackets is usually called covariant derivative of the components of
a tensor, and denoted as:

∇ρA
µν

λ ≡ ∂ρA
µν

λ + Γ µ
σρA

σν
λ + Γ ν

σρA
µσ

λ − Γ σ
λρA

µν
σ.

One can understand the structure of this expression in the following way:

• The first term is the ordinary derivative of a function.

• For every “up” index in Aµν
λ add one term of the form ΓA, where this index appears as an upper

one on Γ , while the corresponding one on A is contracted to a first lower index of Γ .

• For every “down” index in Aµν
λ subtract one term of the form ΓA, where the index appears as a

first lower on Γ , while the corresponding one on A is contracted to the upper index of Γ .

• The second lower index on all Γ is always the index of the differentiation.
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The above construction is unique, and the procedure of “correcting indices” with connection coefficients
corresponds precisely to differentiating the basis vectors and 1-forms of a tensor.

Note that from the above formula it is obvious that Γ are not components of a tensor! Indeed,
it is easy to verify that the transformation rule for Γ λ

µν is:

Γ λ′

µ′ν′ = Mλ′

λMµ
µ′Mν

ν′Γ λ
µν + Mλ′

λ∂µ′Mλ
ν′ .

The extra term on the right spoils the tensorial transformation properties of Γ .

So far we have constructed the directional derivative in the ν direction. The directional derivative in
the direction of an arbitrary vector BBB = Bµeeeµ is nothing but an appropriate linear combination:

▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
BBBAAA = Bν ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽νAAA.

However, sometimes it is convenient to consider a derivative without specifying any direction. Here
basis 1-forms offer themselves as a very useful tool. Define the gradient ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽ of a tensor field AAA as:

▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽AAA ≡ eeeµ ⊗ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽µAAA.

Recover the directional derivative in the direction of the vector BBB by letting the basis 1-forms act on BBB,
ie. construct an inner product of the gradient with the vector BBB:

(

▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽AAA
)

·BBB = C
((

▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽AAA
)

⊗BBB
)

= eeeµ[BBB] ⊗ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽µAAA = Bµ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽µAAA = ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
BBBAAA.

In this sense, the gradient operator, ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽ ≡ eeeµ ⊗ ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽µ is the most general derivative operator of any
tensor, and every other differential operator may be constructed from it. Its action can be summarized
as the action on an ordinary function plus the action on basis vectors and basis 1-forms:

▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽f = (∂µf)eeeµ, ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽eeeµ = Γ λ
µνeee

ν ⊗ eeeλ, ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽eeeµ = −Γ µ
λνeee

ν ⊗ eeeλ.

These rules, in addition to the usual linearity and Leibniz rule, allow one to construct a gradient of any
tensor field, and consequently any kind of derivative within tensor algebra.

Note that the gradient of a vector is a (1, 1)-tensor, and in general the gradient of a (p, q)-tensor is a
(p, q + 1)-tensor.

Note also that one usually introduces the connection 1-forms ωωωωωωωωωλ
µ ≡ Γ λ

µνeee
ν and writes ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽eeeµ =

ωωωωωωωωωλ
µ ⊗eeeλ. Despite their name, ωωωωωωωωωλ

µ are not proper 1-forms — they have indices and consequently depend
on the choice of the basis, and their components are connection coefficients, which do not transform
as components of a tensor. Nevertheless, we shall see below that connection 1-forms are very useful in
practical calculations.

The next topic we are interested in is the operator analogous to ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽, but one adapted to the algebra
of differential forms, Λ∗. Its explicit construction is similar to the above step-by-step construction
of the gradient, and we are not going to deal with it. Instead, like for the gradient, we shall provide
simple computational rules which cover the action of this operator on functions and basis 1-forms, and
consequently everything else will follow from these rules.

Introduce this operator, called exterior derivative and denoted ddd, in the following way:

• Let ddd act on a p-form to produce a (p + 1)-form:

fff p+1 = dddgggp.

• Let ddd be linear:
ddd(afff + bggg) = adddfff + bdddggg .
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• If fff and ggg are p- and q-forms, let the following p-commutative Leibniz rule hold:

ddd(fff ∧ ggg) = dddfff ∧ ggg + (−1)pfff ∧dddggg .

• Let ddd act on a 0-form (ie. an ordinary function) in the same way as a gradient ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽:

dddf = ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽f = (∂µf)eeeµ.

• Let double exterior derivative be zero:
dddddd ≡ 0.

This last rule is actually the statement that ordinary partial derivatives should commute, written
in the language of differential forms.

• The exterior derivative acts on basis 1-forms according to the equation:

dddeeeλ = −
1

2
cλ

µνeee
µ ∧ eeeν ,

where cλ
µν are the commutation coefficients.

There is one more important remark to be made with respect to commutation coefficients. Note
that the exterior derivative (or a gradient) of a 0-form is a 1-form, which can act on a basis vector as a
functional, according to the biorthogonality relation:

dddf [eeeν ] = ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽f [eeeν ] = (∂µf)eeeµ[eeeν ] = ∂νf.

Now if we remember that we actually introduced the basis vectors eeeµ as partial differential operators
along the coordinate curves,

eeeµ ≡
∂

∂xµ
,

we can introduce “action” of a vector on a function f as:

eeeµ[f ] = ∂µf.

Comparing this to the action of dddf on eeeµ we see that dddf [eeeµ] = eeeµ[f ] in the coordinate basis. Choosing
f to be precisely the coordinate curve xν , we have:

dddxν [eeeµ] = eeeµ[xν ] = ∂µxν = δν
µ.

But this is nothing else than the biorthogonality relation itself, eeeν [eeeµ] = δν
µ, which means that the

coordinate basis vectors eeeµ ≡ ∂µ have the following corresponding basis 1-forms:

eeeν = dddxν .

Using the rule dddddd = 0 we can now calculate that in a coordinate basis all commutation coefficients
are zero:

cλ
µν = 0.

The opposite is also valid — if the commutation coefficients are zero, the basis is a coordinate
basis, ie. there exists a set of coordinate curves xµ such that

eeeµ =
∂

∂xµ
and eeeµ = dddxµ.

In general, the above action of a basis vector on a function f simply produces another function, on
which another basis vector can act. We can therefore introduce the commutator of basis vectors as:

[eeeµ,eeeν ]f = eeeµ[eeeν [f ]] − eeeν [eeeµ[f ]].
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One can show that the following identity is satisfied:

[eeeµ,eeeν ] = cλ
µνeeeλ

Thus, in the coordinate basis eeeµ ≡ ∂µ we see again that commutation coefficients are zero, due to the
commutativity of partial derivatives.

Therefore, one can have a convenient criterion to verify whether a given basis is coordinate or non-
coordinate — basis is a coordinate basis iff the commutation coefficients are all zero. Given the above
formula, those commutation coefficients can be easily calculated.

As a final remark, note that one can extend the idea “basis vector acts on a function” to the idea of
“arbitrary vector acts on a function” simply by expanding the vector in a basis:

AAA[f ] = Aµeeeµ[f ].

Consequently, one can define a commutator of two vectors as:

[AAA,BBB]f =
(
Aµeeeµ[Bλ] − Bνeeeν [Aλ] + AµBνcλ

µν

)
eeeλ[f ].

From this one sees that the commutator of two vectors is a vector. The commutator of vectors is also
called Lie bracket.

2.3 Curvature and torsion

The directional derivative provides us with information how much a given vector changes with respect to
its parallel-transported image in a nearby point in a given direction. Therefore, the statement that the
vector AAA does not actually differ when transported in the direction of vector BBB is

▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
BBBAAA = 0.

If this is satisfied, we say that AAA stays parallel to itself along BBB. If a vector stays parallel to itself
along its own direction,

▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
AAAAAA = 0,

we say that the vector is autoparallel. If the vector AAA is a tangent vector to some curve xµ(λ), namely
AAA = dxµ

dλ
eeeµ, the above autoparallel equation can be rewritten in terms of components as a differential

equation for the curve:
d2xµ

dλ2
+ Γ µ

ρσ

dxρ

dλ

dxσ

dλ
= 0.

Any curve that satisfies this equation is called an autoparallel curve.

Now consider two vectors, AAA and BBB, and perform first the parallel transport of BBB along AAA, and then
of AAA along BBB. In flat space we could expect the results to be the same, as the two initial vectors and two
transported vectors close up a parallelogram. However, in general this is not always true, and the end-
points of transported vectors fail to close. The “missing piece” is a vector that connects the end-points,
and is called torsion of the manifold. Formally, we define the torsion operator and torsion tensor
as:

T (AAA,BBB) = ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
AAABBB − ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽

BBBAAA− [AAA,BBB],

TTT =
1

2
T λ

µνeeeλ ⊗ eeeµ ∧ eeeν .

The components T λ
µν can be expressed in terms of the connection and commutation coefficients as:

T λ
µν = Γ λ

νµ − Γ λ
µν − cλ

µν .
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Next consider three vectors, AAA, BBB and CCC . Construct a closed loop from vectors AAA, BBB and the
“missing” torsion-piece, and perform parallel transport of vector CCC around this closed loop. In flat space
we could expect that the resulting vector should coincide with the original one, but in general this is
not the case. The difference is proportional to the curvature of the manifold. Formally, we define the
curvature operator and curvature tensor as:

R(AAA,BBB) = ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
AAA
▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽

BBB − ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
BBB
▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽

AAA − ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽[AAA,BBB],

RRR =
1

2
Rλ

ρµνeeeλ ⊗ eeeρ ⊗ eeeµ ∧ eeeν .

The components Rλ
ρµν can be expressed in terms of the connection and commutation coefficients as:

Rλ
ρµν = ∂µΓ λ

ρν + Γ λ
σµΓ σ

ρν − ∂νΓ λ
ρµ − Γ λ

σνΓ σ
ρµ − cσ

µνΓ λ
ρσ.

Note:

• Torsion and curvature are the properties of the rule for parallel transport on a given manifold,
and do not depend on vectors AAA, BBB and CCC used for their construction. This is obvious when one sees
that their components in arbitrary basis depend only on connection and commutation coefficients.

• The dependence on the commutation coefficients can be eliminated by choosing a coordinate basis.
However, the dependence on the connection coefficients cannot be eliminated.

• If a rule for parallel transport is given such that TTT = 0, we say that the manifold is torsion-free.

• If a rule for parallel transport is given such that RRR = 0, we say that the manifold is flat. Otherwise
it is curved.

• It will be useful to rewrite the torsion and curvature tensors in the form

TTT = eeeλ ⊗ T λ, RRR = eeeλ ⊗ eeeρ ⊗Rλ
ρ,

where T λ are called torsion 1-forms (D of them), while Rλ
ρ are called curvature 2-forms (D2

of them):

T λ ≡
1

2
T λ

µνeee
µ ∧ eeeν , Rλ

ρ ≡
1

2
Rλ

ρµνeee
µ ∧ eeeν .

They are not exactly pure geometric objects (just like connection 1-forms ωωωωωωωωωλ
µ), since they carry

indices and thus depend on the choice of the basis, but nevertheless they are extremely convenient
for calculations, as we shall see below.

• The most efficiently “packaged” statements about the torsion and curvature components are the
Cartan structure equations:

T λ = dddeeeλ +ωωωωωωωωωλ
µ ∧ eeeµ, Rλ

ρ = dddωωωωωωωωωλ
ρ +ωωωωωωωωωλ

µ ∧ωωωωωωωωωµ
ρ.

Later in the text we shall demonstrate how to use these equations to calculate curvature in the
most efficient possible way.
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Chapter 3

The metric

3.1 Principle of equivalence, the metric tensor

General theory of relativity is based on two important principles — the principle of general relativity,
which has been mentioned before, and the equivalence principle:

The equivalence principle states:

At every point in an arbitrary gravitational field there exists a ref-
erence frame (the so-called locally inertial frame) in which all laws
of physics reduce to the form as given in special theory of relativity.

There are several important things to understand with respect to this axiom:

• One can always construct a reference frame which locally “looks” like the flat Minkowski space of
special relativity. This is a theorem, and not part of the equivalence principle. We shall deal with
this construction below.

• Given the above locally inertial (or locally Minkowskian) frame of reference, it is a matter of physics
to specify whether all laws look like in special relativity or not. The statement that they do is the
nontrivial part of equivalence principle, and it defines the interaction of gravity with other
fields.

The Minkowski spacetime has three very important properties:

• It is torsion-free and flat, which means that TTT = 0 and RRR = 0. This in turn means that one can
choose a special coordinate basis eeei where all connection coefficients vanish:

Γ i
jk = 0.

We use Latin indices instead of Greek to distinguish this special basis from all other arbitrary bases.

• Its dimension is D = 4.

• It has a concept of distance, defined via the line element formula

ds2 = ηijdxidxj ,

where ds is the distance between the points with coordinates xi and xi + dxi (given in the above
special basis eeei), and ηµν represent the components of the metric tensor:

ggg ≡ ηijeee
i ⊗ eeej = −eee0 ⊗ eee0 + eee1 ⊗ eee1 + eee2 ⊗ eee2 + eee3 ⊗ eee3.
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The above equation is the definition of Minkowski metric, and we can read off the components
ηij :

η00 = −1, η11 = η22 = η33 = +1, ηij = 0 for i 6= j.

The concept of distance is fundamental to the Minkowski space, and in general.

Of course, in Minkowski space as in any other, one is not required to work in the special basis eeei.
One can transform from this basis into another arbitrary one using the transformation matrices Mµ

i and
M i

µ defined earlier. But now we shall introduce another notation for these matrices, eeeµ
i and eeei

µ, and
call them tetrads. Using the tetrads, one can transform the metric tensor ggg to an arbitrary basis,

ggg = gµνeee
µ ⊗ eeeν , gµν = ηijeee

i
µeee

j
ν , ηij = gµνeee

µ
ieee

ν
j .

Given that det[ηµν ] = −1 6= 0 and tetrads are invertible, one can also define the inverse metric tensor:

ggg−1 = gµνeeeµ ⊗ eeeν , ggg · ggg−1 = gµλgλνeeeµ ⊗ eeeν = δν
µeee

µ ⊗ eeeν = III ,

where III is the unit tensor of type (1, 1), ie. a unit matrix. The components gµν and gµν can thus be
regarded as “matrices” inverse to each other.

Given its definition in the special Minkowski coordinate frame eeei, one easily sees that the metric
tensor is symmetric, and so is its inverse:

gggT = ggg ,
(
ggg−1

)T
= ggg−1, gµν = gνµ, gµν = gνµ.

The metric, being a (0, 2)-tensor, can be used to define several other concepts:

• Square of the magnitude of a vector:

||AAA||2 ≡ ggg [AAA,AAA] = gµνAρAσeeeµ[eeeρ] ⊗ eeeν [eeeσ] = gµνAµAν .

Note that due to the one minus sign in ηµν the square of this magnitude can be positive, negative
or zero, for nonzero vector AAA. We therefore distinguish between spacelike, timelike and null (or
lightlike) vectors, respectively.

• The scalar product of two vectors:

AAA ·BBB ≡ ggg [AAA,BBB] = gµνAρBσeeeµ[eeeρ] ⊗ eeeν [eeeσ] = gµνAµBν .

Note that this scalar product is not positive-definite. Also note that the square of the magnitude
of the vector is actually the scalar product with itself. Finally, note that we use the same “dot”
symbol for both the scalar product and inner product. This will be explained in more detail below.

• The scalar product and magnitude of 1-forms is defined in the analogous way, using ggg−1.

• If one chooses some coordinate frame, the basis 1-forms can be written in the form eeeµ = dddxµ, and
one can write the (more rigorous and fancy) differential geometry line element as:

ddds2 = ggg = gµνdddxµ ⊗dddxν .

One typically omits the ⊗ and writes d instead of ddd, thereby recovering ds2 = gµνdxµdxν . The
latter equation is actually just the former one written in sloppy notation.

Once we have introduced the metric, we can generalize to non-Minkowski space. The metric on a
general manifold has the same properties as in flat Minkowski case. The only difference is that one has
one “copy” of Minkowski space at each point P on the manifold, and covering only infinitesimal area
around the point. This means that at each point one can always choose a basis eeei where gij = ηij .
However, in general this basis is a noncoordinate basis, which means that one cannot choose a set
of coordinate curves which would generate this basis. If this were possible, in these coordinates the space
would look flat and with no torsion, which is equivalent to Minkowski space. But given that the basis is
noncoordinate, one has nonzero commutation coefficients cλ

µν which give rise to nonzero curvature and
torsion.
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3.2 Associated tensors, index gymnastics

Using the metric tensor and its inverse, we can construct inner products with some other tensor, thereby
obtaining a new tensor. This new tensor is called associated tensor, and in component notation
this operation is called raising and lowering of indices. Namely, starting from some tensor AAA =
Aµν

λeeeµ ⊗ eeeν ⊗ eeeλ, we can construct the inner product with the metric:

ÃAA = ggg ·AAA = gρµAµν
λeee

ρ ⊗ eeeν ⊗ eeeλ,

where we see that the components of ÃAA are Ãρ
ν

λ = gρµAµν
λ. The tilde symbol is usually dropped and

ÃAA is identified with AAA since they are in one-to-one correspondence with each other. We say that we use
the metric tensor to lower the contravariant index.

Similarly we can use the inverse metric tensor to raise the covariant index, as:

ÃAA = ggg−1 ·AAA = gρλAµν
λeeeµ ⊗ eeeν ⊗ eeeρ,

or in components Ãµνρ = gρλAµν
λ.

Given that metric tensor is invertible, one can always associate the associated tensor back to the
original one, without any loss of information. Thus, through the process of association, the metric tensor
enables us to ignore the distinction between the covariant and contravariant nature of (p, q)-
tensors, and to keep track only of the total tensor rank, p + q. This is heavily used in practice, and in
combination with other operations enables us to construct new tensors from old.

As we have seen earlier, all operations on tensors can be represented in component language as
manipulations with indices. All practical computations with tensors are typically done this way, and
informally go by the name index gymnastics. Abstract (boldface) language is used to understand the
geometric nature of tensors, while any serious nontrivial computation can almost always be performed
much more efficiently using component language and index gymnastics.

3.3 Nonmetricity, classification of geometries

Up to now we have introduced two important concepts that characterize the manifold — connection
coefficents Γ λ

µν (or equivalently the concept of gradient operator, ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽) and the tetrad coefficients eeeµ
i (or

equivalently the metric tensor, ggg). These two concepts are a priori completely independent of each
other. However, a lot of information about the differential structure of the manifold can be learned by
examining the relation between them. This leads us to several important results and gives new insight
into the structure of the geometry of the manifold.

The key relation between metric and connection is embodied in taking the gradient of the metric,
thereby constructing a new tensor:

QQQ = ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽ggg , or in components Qλµν = ∇λgµν ≡ ∂λgµν − Γ σ
µλgσν − Γ σ

νλgµσ.

The tensor QQQ is called nonmetricity tensor. The above definition of the nonmetricity tensor can
be used together with the first Cartan structure equation T λ = dddeeeλ + ωωωωωωωωωλ

µ ∧ eeeµ and the definition of
commutation coefficients dddeeeλ = − 1

2cλ
µνeee

µ ∧ eeeν to express the connection coefficients in the following
form:

Γ λ
µν =

{
λ
µν

}
+ ∆λ

µν + Kλ
µν + Q̂λ

µν .

Here we have introduced:

• the Christoffel symbol
{

λ
µν

}
≡

1

2
gλσ (∂µgσν + ∂νgσµ − ∂σgµν) ,
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• the Ricci rotation coefficients

∆λ
µν = −

1

2

(
cλ

µν − cν
λ

µ + cµν
λ
)
,

• the contortion tensor

Kλ
µν = −

1

2

(
T λ

µν − Tν
λ

µ + Tµν
λ
)
,

• the Q̂QQ tensor

Q̂λ
µν =

1

2

(
Qλ

µν − Qν
λ

µ − Qµν
λ
)
.

The above general formula for connection coefficients has a very interesting structure, which provides us
with a means to classify various geometries which can be defined on a manifold:

• The general case is just called linear space with metric, and denoted (L4,ggg) in D = 4 dimensions.
It has in general nonzero nonmetricity, torsion and curvature. The connection coefficients have the
form as above,

Γ λ
µν =

{
λ
µν

}
+ ∆λ

µν + Kλ
µν + Q̂λ

µν .

• The requirement QQQ = ▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽ggg = 0 (called metricity condition) imposes more special structure.
The resulting space is called Riemann-Cartan space, and denoted U4 in four dimensions. The
connection coefficients have the form

Γ λ
µν =

{
λ
µν

}
+ ∆λ

µν + Kλ
µν .

• Additional requirement TTT = 0 (zero torsion condition) imposes even more special structure.
The resulting space is called Riemann space, and denoted V4 in four dimensions. The connection
coefficients obtain the form

Γ λ
µν =

{
λ
µν

}
+ ∆λ

µν .

One can always choose to work in a coordinate basis, where the commutation coefficients are
zero. In this basis the connection becomes equal to the Christoffel symbol, Γ λ

µν =
{

λ
µν

}
, and is

called Levi-Civita connection.

• Yet another requirement, RRR = 0 (flat space condition) specifies the Minkowski space, denoted
M4 in four dimensions. In this space one can always choose a special basis such that the connection
vanishes:

Γ i
jk = 0.

• Alternatively, if one starts from the Riemann-Cartan space U4 and imposes the flat-space condition
RRR = 0 while keeping the torsion nonzero, one arrives at the Weitzenböck’s teleparallel space,
denoted T4. Additional requirement TTT = 0 leads again to Minkowski space M4.

The above classification of geometries can be neatly represented on a diagram (see below). The general
theory of relativity lives in the Riemann space V4, ie. it assumes that QQQ = 0 and TTT = 0. If one relaxes
these conditions, one can construct other, different theories of gravity. The most famous example is the
Einstein-Cartan theory of gravity, which lives in Riemann-Cartan space U4.

12



(L4,ggg)

QQQ=0

?

U4

TTT=0 RRR=0

	 R

V4 T4

RRR=0 TTT=0

R 	

M4

3.4 Cartan structure equations, calculation of curvature

The general theory of relativity assumes that nonmetricity and torsion are always zero, ie. it is defined
in Riemann geometry V4. The metricity condition can then be rewritten in the form

dddgµν = ωωωωωωωωωµν +ωωωωωωωωωνµ,

while the zero-torsion condition can be rewritten (via the first Cartan structure equation) as

dddeeeλ +ωωωωωωωωωλ
µ ∧ eeeµ = 0.

Starting from the given components of the metric tensor gµν in some basis, we can use the above two
formulas to calculate the connection 1-forms ωωωωωωωωωµ

ν , and then use the second Cartan structure equation,

Rλ
ρ = dddωωωωωωωωωλ

ρ +ωωωωωωωωωλ
µ ∧ωωωωωωωωωµ

ρ,

to calculate curvature tensor.
The general procedure goes as follows:

• Use convenient tetrads eeeµ
i and eeei

µ to transform into a locally inertial frame eeei, so that the compo-
nents of the metric tensor are gij = ηij . From the metricity condition then conclude thatωωωωωωωωωij = −ωωωωωωωωωji,
ie. there are only 6 connection 1-forms to be calculated (in D = 4 dimensions).

• Calculate the commutation coefficients in the inertial basis from their definition,

dddeeei = −
1

2
ci

jkeee
j ∧ eeek.

• Employ the first Cartan structure equation,

dddeeei +ωωωωωωωωωi
j ∧ eeej = 0,

to express the connection 1-forms in terms of commutation coefficients. This step has already been
done above, in the general expression for the connection in Riemann space:

Γ λ
µν =

{
λ
µν

}
+ ∆λ

µν .

The Christoffel symbol is equal to zero in locally inertial frame because gij = ηij = const, so we
have

ωωωωωωωωωij = −
1

2
(cijk − ckij + cjki)eee

k.
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• Employ the second Cartan structure equation,

Ri
j = dddωωωωωωωωωi

j +ωωωωωωωωωi
k ∧ωωωωωωωωωk

j ,

to calculate the components of the curvature 2-forms Ri
j , and tabulate the nonzero components of

the Riemann tensor,

Ri
j ≡

1

2
Ri

jkleee
k ∧ eeel.

• Finally, recover the components of the Riemann tensor in the original coordinates by transforming
back from the locally inertial ones:

Rλ
ρµν = eeeλ

ieee
j
ρeee

k
µeee

l
νRi

jkl.

This completes the calculation of the curvature tensor from the given metric.

We now demonstrate this procedure for the well-known case of the Friedmann metric. This metric is
usually written using the natural spherical coordinates of a 3-sphere, χ, θ, ϕ, and time t, as:

ds2 = −dt2 + a2(t)dχ2 + a2(t) sin2 χdθ2 + a2(t) sin2 χ sin2 θdϕ2,

or in more rigorous and formal notation,

ddds2 ≡ ggg = −dddt ⊗dddt + a2(t)dddχ ⊗dddχ + a2(t) sin2 χdddθ ⊗dddθ + a2(t) sin2 χ sin2 θdddϕ ⊗dddϕ.

The metric is represented in the natural coordinate basis eeeµ = dddxµ, ie.

eeet = dddt, eeeχ = dddχ, eeeθ = dddθ, eeeϕ = dddϕ,

and its components gµν are

gtt = −1, gχχ = a2(t), gθθ = a2(t) sin2 χ, gϕϕ = a2(t) sin2 χ sin2 θ.

Now we transform into the locally inertial basis, eeei = eeei
µeee

µ, such that

ddds2 ≡ ggg = −eee0 ⊗ eee0 + eee1 ⊗ eee1 + eee2 ⊗ eee2 + eee3 ⊗ eee3,

ie. such that the components of the metric tensor are gij = ηij . The tetrads eeei
µ that perform this are

obvious:
eee0 = 1

︸︷︷︸

eee
0

t

dddt, eee1 = a
︸︷︷︸

eee
1

χ

dddχ, eee2 = a sin χ
︸ ︷︷ ︸

eee
2

θ

dddθ, eee3 = a sin χ sin θ
︸ ︷︷ ︸

eee
3

ϕ

dddϕ.

First we calculate the commutation coefficients. Differentiating eee0 we have:

dddeee0 = ddddddt ≡ 0.

Differentiating eee1 we have:

dddeee1 = ddd (a(t)dddχ) = (ddda) ∧dddχ + addddddχ
︸︷︷︸

0

= ȧdddt ∧dddχ =
ȧ

a
eee0 ∧ eee1 = −c1

01eee
0 ∧ eee1.

Similarly, we have

dddeee2 =
ȧ

a
eee0 ∧ eee2 +

1

a
cotχeee1 ∧ eee2,

and

dddeee3 =
ȧ

a
eee0 ∧ eee3 +

1

a
cotχeee1 ∧ eee3 +

cot θ

a sinχ
eee2 ∧ eee3.
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From this we read off all nonzero commutation coefficients (indices 0, 1, 2, 3 are of course raised and
lowered using ηµν):

c101 = c202 = c303 = −
ȧ

a
, c212 = c313 = −

1

a
cotχ, c323 = −

cot θ

a sinχ
.

Note that due to antisymmetry cijk = cikj there are also other nonzero coefficients that can be obtained
from these.

Next we use these coefficients to construct 6 connection 1-forms (using the formula given above).
Straightforward (and short!) computation gives:

ωωωωωωωωω0
1 =

ȧ

a
eee1 = ȧdddχ,

ωωωωωωωωω0
2 =

ȧ

a
eee2 = ȧ sin χdddθ,

ωωωωωωωωω0
3 =

ȧ

a
eee3 = ȧ sin χ sin θdddϕ,

ωωωωωωωωω1
2 = −

1

a
cotχ = − cosχdddθ,

ωωωωωωωωω1
3 = −

1

a
cotχ = − cosχ sin θdddϕ,

ωωωωωωωωω2
3 = −

cot θ

a sinχ
= − cos θdddϕ.

The connection 1-forms are properly expressed with components in the basis eeei, but we have also expressed
them in the coordinate basis eeeµ = dddxµ since this is more convenient for the next step.

The next step involves calculating 6 curvature 2-forms, using the second Cartan structure equation.
For example,

R0
1 = dddωωωωωωωωω0

1 +ωωωωωωωωω0
2 ∧ωωωωωωωωω2

1 +ωωωωωωωωω0
3 ∧ωωωωωωωωω3

1 = ädddt ∧dddχ + 0 + 0 =
ä

a
eee0 ∧ eee1 = R0

101eee
0 ∧ eee1.

In a similar way we compute all curvature 2-forms:

R0
1 =

ä

a
eee0 ∧ eee1, R0

2 =
ä

a
eee0 ∧ eee2, R0

3 =
ä

a
eee0 ∧ eee3,

R1
2 =

1 + ȧ2

a
eee1 ∧ eee2, R1

3 =
1 + ȧ2

a
eee1 ∧ eee3, R2

3 =
1 + ȧ2

a
eee2 ∧ eee3.

From here we simply read off the nonzero components of the curvature tensor in the locally inertial frame:

R0
101 = R0

202 = R0
303 =

ä

a
, R1

212 = R1
313 = R2

323 =
1 + ȧ2

a
.

Finally, we use the tetrads to convert these components back to the original coordinate frame, to obtain
the final result:

Rt
χtχ = äa,

Rt
θtθ = äa sin2 χ,

Rt
ϕtϕ = äa sin2 χ sin2 θ,

Rχ
θχθ = (1 + ȧ2) sin2 χ,

Rχ
ϕχϕ = (1 + ȧ2) sin2 χ sin2 θ,

Rθ
ϕθϕ = (1 + ȧ2) sin2 χ sin2 θ.

All other components are obtained from these using various symmetries of the curvature tensor.

This completes the calculation of curvature. Once curvature tensor has been computed, it is straight-
forward and easy to construct the components of Ricci tensor, scalar curvature and Einstein tensor, using
equations

Rµν = Rλ
µλν , R = gµνRµν , Gµν = Rµν −

1

2
gµνR.

Happy calculating! ;-)
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